
Monty Hall, Monty Fall, Monty Crawl

Jeffrey S. Rosenthal

(June, 2005; appeared in Math Horizons, September 2008, pages 5–7.)

(Dr. Rosenthal is a professor in the Department of Statistics at the University of Toronto.

His book “Struck by Lightning: The Curious World of Probabilities” is being published by

HarperCollins Canada.)

1 Introduction

In 1990, vos Savant [3] introduced the infamous Monty Hall problem. Her asserted answer

set off a storm of controversy in which she received thousands of letters [4]. Numerous

professional mathematicians and others insisted that she was wrong, some using rather strong

language (“you are utterly incorrect”; “I am in shock”; “you are the goat”). Vos Savant had

the last laugh, when she called upon “math classes all across the country” to estimate the

probabilities using pennies and paper cups, and they reported with astonishment that vos

Savant was correct [4].

Despite all the publicity, most people have at best a vague understanding of why vos

Savant’s answer is correct, and the extent to which it does or does not also apply to variants

of the problem. In this paper, we discuss the Proportionality Principle, which allows this

and many related problems to be solved easily and confidently.

2 The Monty Hall Problem and Variants

The original Monty Hall problem may be summarised as follows:

Monty Hall Problem: A car is equally likely to be behind any one of three doors.
You select one of the three doors (say, Door #1). The host then reveals one non-
selected door (say, Door #3) which does not contain the car. At this point, you choose
whether to stick with your original choice (i.e. Door #1), or switch to the remaining
door (i.e. Door #2). What are the probabilities that you will win the car if you stick,
versus if you switch?

Most people believe, upon first hearing this problem, that the car is equally likely to be

behind either of the two unopened doors, so the probability of winning is 1/2 regardless of
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whether you stick or switch. However, in fact the probabilities of winning are 1/3 if you

stick, and 2/3 if you switch [3]. This fact is often justified as follows:

Shaky Solution: When you first selected a door, you had a 1/3 chance of being
correct. You knew the host was going to open some other door which did not contain
the car, so that doesn’t change this probability. Hence, when all is said and done,
there is a 1/3 chance that your original selection was correct, and hence a 1/3 chance
that you will win by sticking. The remaining probability, 2/3, is the chance you will
win by switching.

This solution is actually correct, but I consider it “shaky” because it fails for slight variants

of the problem. For example, consider the following:

Monty Fall Problem: In this variant, once you have selected one of the three doors,
the host slips on a banana peel and accidentally pushes open another door, which just
happens not to contain the car. Now what are the probabilities that you will win
the car if you stick with your original selection, versus if you switch to the remaining
door?

In this case, it is still true that originally there was just a 1/3 chance that your original

selection was correct. And yet, in the Monty Fall problem, the probabilities of winning if

you stick or switch are both 1/2, not 1/3 and 2/3. Why the difference? Why doesn’t the

Shaky Solution apply equally well to the Monty Fall problem?

Another variant is as follows:

Monty Crawl Problem: As in the original problem, once you have selected one of
the three doors, the host then reveals one non-selected door which does not contain
the car. However, the host is very tired, and crawls from his position (near Door #1)
to the door he is to open. In particular, if he has a choice of doors to open (i.e., if
your original selection happened to be correct), then he opens the smallest number
available door. (For example, if you selected Door #1 and the car was indeed behind
Door #1, then the host would always open Door #2, never Door #3.) What are the
probabilities that you will win the car if you stick versus if you switch?

This Monty Crawl problem seems very similar to the original Monty Hall problem; the only

difference is the host’s actions when he has a choice of which door to open. However, the

answer now is that if you see the host open the higher-numbered unselected door, then

your probability of winning is 0% if you stick, and 100% if you switch. On the other hand,

if the host opens the lower-numbered unselected door, then your probability of winning is

50% whether you stick or switch. Why these different probabilities? Why does the Shaky

Solution not apply in this case?
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3 The Proportionality Principle

To deal with these and other problems, we introduce a simple rule (see e.g. [2]; a mathematical

discussion is presented in the Appendix):

The Proportionality Principle: If various alternatives are equally likely, and then
some event is observed, the updated probabilities for the alternatives are propor-
tional to the probabilities that the observed event would have occurred under those
alternatives.

Consider some examples:

Sister in the Shower: ([2]) Either Alice or Betty is equally likely to be in the
shower. Then you hear the showerer singing. You know that Alice always sings in the
shower, while Betty only sings 1/4 of the time. What is the probability that Alice is
in the shower?

Solution. By the Proportionality Principle, since Alice is four times as likely to sing as is
Betty, therefore the showerer is four times as likely to be Alice as Betty. The probabilities
must add up to 1, so this means that the probability is 4/5 that Alice is in the shower, and
1/5 that Betty is.

Nebulous Neighbours: Your new neighbours have two children of unknown gender.
From older to younger, they are equally likely to be girl-girl, girl-boy, boy-girl, or boy-
boy. One day you catch a glimpse of a child through their window, and you see that
it is a girl. What is the probability that their other child is also a girl?

Solution. The probabilities that a glimpsed child will be a girl for each of the four possi-
bilities (girl-girl, girl-boy, boy-girl, and boy-boy) are respectively 1, 1/2, 1/2, and 0. Since
the probabilities must add to 1, the probabilities of these four possibilities are respectively
1/2, 1/4, 1/4, and 0. Hence, the probability is 1/2 that the other child is also a girl.

Three-Card Thriller: (e.g. [2]) A friend has three cards: one red on both sides,
one black on both sides, and one red on one side and black on the other. She mixes
them up in a bag, draws one at random, and places it on the table with a red side
showing. What is the probability that the other side is also red?

Solution. The probability that a randomly-chosen side will be red for each of three possible
cards (red-red, black-black, and red-black) are respectively 1, 0, and 1/2. So, the updated
probabilities for these three possible cards must be 2/3, 0, and 1/3, respectively. That is,
the probability is 2/3 that the card’s other side is also red. (If you’re not convinced, then
consider that your friend chose one of the six possible card sides. Three of those sides are
red, and two of the three also have a red side opposite.)
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Die-controlled Coin: You roll a single six-sided die, and then flip a coin the number
of times showing on the die. The coin comes up heads every time. What are the
probabilities that the die showed 1, 2, 3, 4, 5, and 6, respectively?

Solution. The probabilities that the coin came up heads every time, if the die showed 1,
2, 3, 4, 5, and 6, are respectively 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64. The probabilities for
what the die showed are therefore proportional to this, namely 32/63, 16/63, 8/63, 4/63,
2/63, and 1/63.

4 Monty Hall Revisited

The Proportionality Principle makes the various Monty Hall variants easy. However, first a

clarification is required. The original Monty Hall problem implicitly makes an additional

assumption: if the host has a choice of which door to open (i.e., if your original selection

was correct), then he is equally likely to open either non-selected door. This assumption,

callously ignored by the Shaky Solution, is in fact crucial to the conclusion (as the Monty

Crawl problem illustrates).

With this additional assumption, the original Monty Hall problem is solved as follows.

Originally the car was equally likely to be behind Door #1 or #2 or #3, and you selected

Door #1 (say). The probabilities of the host then choosing to open Door #3, when the car

is actually behind Door #1, Door #2, and Door #3, are respectively 1/2, 1, and 0. Hence,

the updated probabilities of the car being behind each of the three doors are respectively

1/3, 2/3, and 0. That is, your chance of winning the car is 1/3 if you stick with Door #1,

and 2/3 if you switch to Door #2.

In the Monty Fall problem, suppose you select Door #1, and the host then falls against

Door #3. The probabilities that Door #3 happens not to contain a car, if the car is behind

Door #1, #2, and #3, are respectively 1, 1, and 0. Hence, the probabilities that the car

is actually behind each of these three doors are respectively 1/2, 1/2, and 0. So, your

probability of winning is the same whether you stick or switch.

In the Monty Crawl problem, suppose again that you select Door #1. The probabilities

that the host would choose to open Door #3, if the car were behind Door #1, #2, and #3,

are respectively 0, 1, and 0. Hence, if the host opens Door #3, then it is certain that the

car is actually behind Door #2. On the other hand, the probabilities that the host would

choose to open Door #2 are respectively 1, 0, and 1. Hence, if the host opens Door #2, the

probabilities are now 1/2 each that the car is behind Door #1 and Door #3.

Finally, here is a generalisation:
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Monty Small Problem: In this variant, the host is only somewhat tired. If he has
a choice of doors to open, then he has a small probability p of opening the largest
number available door, otherwise (with probability 1−p) he opens the smallest number
available door. What is the probability that you will win the car if you then switch
to the third door? (The case p = 1/2 is the original problem, while p = 0 is Monty
Crawl.)

In this case, if you select Door #1, the probabilities that the host will open Door #3 are

respectively p, 1, and 0. Hence, in this case, the probability of winning if you switch is

1/(1 +p). [Exercise: If the host had instead opened Door #2, this probability would instead

be 1/(2− p).]

5 Appendix: Mathematical Discussion

In mathematical terms, the Proportionality Principle says the following: If P(A1) = P(A2) =

. . . = P(An) > 0, and P(B) > 0, then

P(Ai |B) = K P(B |Ai) ,

where K > 0 does not depend on i.

This equation is essentially a re-statement of Bayes’ Theorem (e.g. [1], p. 21). Indeed,

P(Ai |B) =
P(Ai ∩B)

P(B)
=

P(Ai) P(B |Ai)

P(B)
= K P(B |Ai) ,

where K = P(Ai) /P(B), which does not depend on i since P(A1) = P(A2) = . . . = P(An).
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